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Abstract: This paper studied an optimal reinsurance and investment problem for insurers under the mean-variance
criterion in the stochastic interest rate and stochastic volatility environment, where the financial market consists
of two assets: one is the risk-free asset (i.e bond) and the other is the risky-asset (i.e stock) whose volatility sat-
isfying the Heston model. Assume that the interest rate is driven by Vasicek interest rate model and the surplus
process is approximated by diffusion approximation model. In order to hedge the risk of the insurance, proportion-
al reinsurance is considered. And the insurer wishes to look for the optimal reinsurance and investment strategies
to minimize the variance of the terminal wealth for a given expected terminal wealth. By employing dynamic
programming principle and Lagrange duality theorem, the optimal reinsurance and investment strategies and the
efficient frontier are explicitly obtained. Finally, some special cases and sensitivity analysis are provided to illus-
trate our results.
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1 Introduction

The optimal reinsurance and investment problem-
s have drawn great attention due to the fact that the
reinsurance is an effective way to spread risk and that
the investment is an increasingly important element in
the insurance business in recent years. Many litera-
tures have studied optimization problems under dif-
ferent financial markets and various objectives in in-
surance risk management, such as maximizing the ex-
pected utility function of terminal wealth, minimiz-
ing the probability of ruin for the insurers, and mean-
variance criterion. Mean-variance criterion is pio-
neered in portfolio selection problem by Markowitz
[1] which has been regarded as the milestone of mod-
ern portfolio theory. Since Markowitz, Li and Ng
[2] first extend a single-period investment model into
multi-period model and the explicit solution is derived
by a linear quadratic (LQ) control that is developed
by them. Zhou and Li [3] focus on continuous-time
mean-variance portfolio selection problems, and the
efficient investment strategy and the efficient frontier
are obtained by applying the LQ approach. Fu et al.[4]
obtain the closed-form solution to the optimal strategy
and the efficient frontier by the dynamic programming

principle and Lagrange duality theorem. In addition,
some scholars point out that the mean-variance cri-
terion could be of interest in insurance applications.
For example, Bauerle [5] considers the proportional
reinsurance and obtains the optimal strategy under the
mean-variance criterion where the surplus process is
modeled by the classical Cramer-Landberg (CL) mod-
el. Bai and Zhang [6] investigate the reinsurance and
investment problem under the assumption that the sur-
plus of the insurer is modeled by a CL model and a d-
iffusion approximation (DA) model respectively, and
obtain the optimal reinsurance and investment poli-
cies under the mean-variance criterion by LQ method.
Zeng and Li [7] also consider investing multiple risky
assets whose price processes follow geometric Brow-
nian motions (GBM), and the optimal time-consistent
policies of investment-reinsurance problem are ob-
tained under the mean-variance criterion. The con-
cern is that the above mentioned risky asset models of
which the volatilities are deterministic and the interest
rates are fixed.

It is all well-known that deterministic volatility is
unrealistic in the real-world environment where infla-
tion, wars, and disaster will come, and that the inter-
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est rate is not always fixed. Ever since the oil cri-
sis in the last century, the interest rate has appeared
more volatile in many western countries. So, it is
very reasonable to incorporate stochastic interest rate
and stochastic volatility into the reinsurance and in-
vestment problem. Previous works on reinsurance-
investment problem with stochastic volatility are as
follows. Bauerle and Blatter [8] derive the optimal in-
vestment and reinsurance policies under the assump-
tion that both the surplus process and the stock index
are driven by Levy process. Gu et al.[9], Lin and
Li [10] and Liang et al.[11] investigate the optimal
investment-proportional reinsurance strategies under
the constant elasticity of variance (CEV) model. Li et.
al.[12] get the time-consistent investment and reinsur-
ance strategies for the mean-variance problem under
Heston’s stochastic volatility model.

However, it does not appeared that someone work-
s on reinsurance-investment problem with stochastic
interest rate. But most of optimal investment prob-
lems with stochastic interest have been studied, such
as Bajeux-Besnainou et al.[13], Korn and Kraft [14],
Chang et al.[15], Chang and Lu [16] and so on. More-
over, some scholars have investigated optimal invest-
ment problems with stochastic interest rate and s-
tochastic volatility. For example, Liu [17] obtained
the optimal investment-consumption strategy in the s-
tochastic framework, in which the interest rate and
volatility are stochastic parameters that are described
as the functions of stochastic factors. Li and Wu [18]
obtain the optimal investment strategy under the as-
sumption that the interest rate is govern by the Cox-
Ingersoll-Ross (CIR) model and the risky asset is
modeled by the Heston model. Liu et al.[19] study the
dynamic portfolios with the CIR interest rate under
the Heston model whose expression is different to Li
and Wu [18], where the manager invests his wealth to
a zero-coupon bond, a riskless asset and a stock, and
get the explicit solution of optimal portfolio strategy.
Chang and Rong [20] investigate an investment and
consumption problem on the basis of Li and Wu [18],
and get the closed-form expression of the optimal in-
vestment and consumption strategy in the stochastic
interest rate and stochastic volatility. Guan and Liang
[21] study an optimal investment problem of DC pen-
sion plan, and obtain the optimal investment strategy
under the stochastic framework, in which the interest
rate is described by the affine model and the risky-
asset is assumed to be driven by the Heston model.

As far as we know, little of literatures for insur-
ers considers the optimal reinsurance and investment
problem with both stochastic interest rate and stochas-
tic volatility under mean-variance criterion. And it is
clear that the optimal strategy under stochastic inter-
est rate and stochastic volatility will be more practical.

So, in this paper, we will focus on studying the opti-
mal reinsurance and investment problem for an insur-
er in the dual stochastic environment, where the in-
terest rate is assumed to follow the Vasicek interest
rate model and the price of the risky asset is driven
by the Heston model. The insurer will purchase pro-
portional reinsurance and allocate one risk-free asset
and one risky asset into the financial market. And, the
objective of the insurer is to minimize the variance
of the terminal wealth for a given expected terminal
wealth. In this paper, by employing the stochastic dy-
namic programming method, we derive the Hamilton-
Jacobi-Bellman (HJB) equation for the value function.
After using a variable change technique and separate
variable approach, we obtain the closed-form solu-
tion of the optimal reinsurance and investment strat-
egy. And by applying Lagrange duality theorem, we
get the explicit expression of the efficient frontier. As
a result, sensitive analysis is given to illustrate the re-
sults obtained, and the effects of market parameters on
the optimal reinsurance and investment strategies are
analyzed. This paper has three main contributions:

(i) Based on Li and Wu [18], the reinsurance is in-
troduced and the optimal reinsurance and investment
problem under stochastic interest rate and stochastic
volatility is studied, in which interest rate is described
by the Vasicek interest rate model.

(ii) The mean-variance model with Vasicek interest
rate and stochastic volatility is studied.

(iii) We adopt dynamic programming principle and
Lagrange duality theorem to successfully obtain the
optimal reinsurance and investment policy and the ef-
ficient frontier.

The reminder of this paper is organized as follows.
In Section 2, the problem framework is described. In
Section 3, Using Lagrange multiplier technique and
dynamic programming principle, we get the closed-
form solutions of the optimal reinsurance and invest-
ment policies for the insurers. In section 4, the ex-
plicit expression of the efficient frontier is obtained
by applying Lagrange duality theorem. In Section 5,
some special cases are given. In Section 6, a sensitiv-
ity analysis is provided to demonstrate our results. In
Section 7, some important conclusions are drawn.

2 The Model
In this section, we provide the problem framework,

which is composed of four parts: the surplus process,
the financial market, the wealth process and the op-
timization criterion. Suppose that the financial mar-
ket consists of two assets: one risk-free asset and one
risky asset. In addition, the insurers can buy propor-
tional reinsurance or new business.
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Throughout this paper (Ω,F , P, {Ft}0≤t≤T ) is a
given complete probability space with a filtration
{Ft}t∈[0,T ] satisfying the usual condition, where T is
a finite constant and P is the real world probability; Ft

stands for the information available until time t. All
stochastic processes in this paper are supposed to be
well defined and adapted processes in this probability
space.

2.1 Surplus Process
We consider the surplus process of an insurer is giv-

en by the DA model:

dR0(t) = µ0dt+ σ0dW1(t), (1)

where µ0 > 0 stands for the premium return rate of
the insurer ; σ0 > 0 can be identified as the volatility
of the insurers’ surplus; {W1(t)} is a one-dimensional
standard Brownian motion.

Suppose that insurers can purchase proportional
reinsurance and acquire new business to control the
insurance risk. For each t ∈ [0, T ], the value of
risk exposure is denoted as m(t) ∈ [0,+∞] repre-
senting the retention level of reinsurance or new busi-
ness. When m(t) ∈ [0, 1], it corresponds to a pro-
portional reinsurance cover; in this case, the insurer
should divert the premium to the reinsurer at the rate
of (1−m(t))µ1, where µ1 is the premium return rate
of the reinsurer satisfying µ1 > µ0. Otherwise, arbi-
trage will exist; meanwhile, for each claim, the insur-
er will pay 100m(t)% of the claim, and the reinsurer
pays the rest 100(1−m(t))%. And, m(t) ∈ (1,+∞)
corresponds to acquiring new business. Incorporating
purchasing proportional reinsurance or acquiring new
business, the DA dynamics for the surplus process as-
sociated with such a reinsurance strategy {m(t) : t ∈
[0, T ]} becomes:

dR(t) = [µ0−(1−m(t))µ1]dt+σ0m(t)dW1(t). (2)

2.2 Financial Market
Assume that the financial market consists two as-

sets: one risk-free asset (e.g a bond or a bank account)
and one risky asset (e.g a stock); the price process of
the risk-free asset B(t) is modeled by:

dB(t) = r(t)B(t)dt, (3)

where r(t) is the interest rate and it is described by a
Vasicek interest rate model:

dr(t) = [θ − cr(t)]dt+ k1dW1(t), (4)

with initial value r(0) > 0, where θ, c, and k1 are
constants. Clearly, r(t) > 0 for all t ≥ 0.

The price process of the risky asset S(t) is assumed
to be driven by the following Heston model ,i.e

dS(t) = S(t)[(r(t) + kη(t))dt+ σ1
√
η(t)dW2(t)],

(5)
dη(t) = [b− aη(t)]dt+ σ1

√
η(t)dW2(t), (6)

with initial value η(0) > 0, where k, b, a, and σ1 are
positive constants satisfying 2b > σ21 , we also have
η(t) > 0 for all t ≥ 0. {W2(t)} is a standard Browni-
an motion independent of {W1(t)}.

2.3 Wealth Process
n(t) is denoted by the proportion of the total wealth

invested in the risky asset, and X(t) is the wealth of
the investor at time t with initial value X(0) = x0.
Then the amount invested in the risky asset at time
t is n(t) ∗ X(t). In this paper, the insurer is al-
lowed to buy reinsurance/acquire new business and
invest in the financial market during the time [0, T ]
to reduce the risk. So, a trading strategy is a pair
of stochastic processes, which should be denoted by
π(t) = {(m(t), n(t))}t∈[0,T ], where m(t) is the value
of risk exposure at time t. Then Xπ(t) satisfies the
following stochastic differential equation (SDE):

dXπ(t) = dR(t) + n(t)Xπ(t)
dS(t)

S(t)

+ [1− n(t)]Xπ(t)
dB(t)

B(t)
.

(7)

Substituting (2),(3) and (5) back into (7) shows that

dXπ(t) = [µ0 − (1−m(t))µ1 + r(t)Xπ(t)

+ kη(t)n(t)Xπ(t)]dt+ σ0m(t)dW1(t)

+ σ1n(t)X
π(t)

√
η(t)dW2(t),

Xπ(0) = x0,

(8)

where x0 is the wealth at time 0.

2.4 The Optimization Criterion

Definition 1 (Admissible strategy). An investment-
reinsurance strategy π(t) =

(
m(t), n(t)

)
is said to be

admissible, if the following conditions are satisfied.
(i)
(
m(t), n(t)

)
is Ft -progressively measurable;

(ii) 0 ≤ n(t) ≤ 1, m(t) ≥ 0;

(iii)E
(∫ T

0

(
σ21n(t)

2X(t)2η(t) + σ20m(t)2
)
dt

)
<

∞;
(iv) For all initial conditions (t0, r0, η0, x0) ∈

[0, T ]× (0,∞)3, the equation (8) has a unique strong
solution.
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Suppose that the set of all admissible strategies is
denoted by Π = {(m(t), n(t))}t∈[0,T ]. The insur-
er’s objective is to find an optimal reinsurance and
investment strategy (m(t), n(t)) such that the expect-
ed terminal wealth satisfies E(X(T )) = C, for some
C ∈ R, while the risk measured by the variance of the
terminal wealth

V arX(T ) = E(X(T )−E(X(T )))2

= E(X(T )− C)2,
(9)

is minimized. The problem of finding the optimal s-
trategy (m(t), n(t)) is regarded as the mean-variance
problem. Therefore, the mean-variance problem can
be written as a linearly constrained stochastic opti-
mization problem:

Minimize
π(t)∈Π

V arX(T ) = E(X(T )− C)2

s.tE(X(T )) = C.
(10)

Finally, an optimal reinsurance-investment policy of
the above problem is called an efficient strategy cor-
responding to some constantC, and the corresponding
(C, V arX(T )) is called an efficient point. Whereas,
the set of the efficient points is called an efficient fron-
tier.

3 The Optimal Reinsurance and In-
vestment Policy

In order to find the optimal reinsurance and invest-
ment strategy, a Lagrange multiplier 2λ ∈ R is intro-
duced and the objective function can be written as:

L̂(m(t), n(t), λ)

=E((X(T )− C)2 + 2λ(X(T )− C))

=E(X(T )− (C − λ))2 − λ2.

(11)

Letting l = C − λ, we get the following stochastic
control problem:

MinimizeL̄(m(t), n(t), l)

=E(X(T )− l)2 − (C − l)2.
(12)

The link between the problem (10) and the problem
(12) is provided by Lagrange duality theorem(see Fu
et al.[4]). Then, we have

MinV arX(T ) =Max
λ∈R

Min
π(t)∈Π

L̂(m(t), n(t), λ)

=Max
l∈R

Min
π(t)∈Π

L̄(m(t), n(t), l).

(13)

For a fixed constant C and l, the objective (12) is e-
quivalent to

Minimize
π(t)∈Π

E(X(T )− l)2. (14)

Then, the value function is defined as

V (t, x, r, η) =Min
π∈Π

E[(X(T )− l)2

|r(t) = r, η(t) = η,X(t) = x].
(15)

And, for any V (t, x, r, η) ∈ [0, T ] × R × R × R, we
define a variational operator :

AπV (t, x, η, r) = Vt + [µ0 − (1−m(t))µ1

+rx+ kηn(t)x]Vx + (θ − cr)Vr

+(b− aη)Vη +
[1
2
σ21n(t)

2x2η

+
1

2
σ20m(t)2

]
Vxx +

1

2
σ21ηVηη

+
1

2
k21Vrr + σ0m(t)k1Vxr + σ21ηxn(t)Vxη,

(16)

where, A is a variational operator, Vt, Vx, Vr, Vη,
Vxx, Vrr, Vηη, Vxr and Vxη represent first-order and
second-order partial derivatives with respect to the
variables t, x, r, and η.

Based on the reference Fleming and Soner [22],
V (t, x, r, η) satisfies the following HJB equation:{

Min
π(t)∈Π

{AπV (t, x, r, η)} = 0

V (T, x, r, η) = (x− l)2.
(17)

In order to solve the nonlinear partial differential
equation(17) and find the optimal strategy π∗(t) =
(m∗(t), n∗(t)), we assume that the HJB equation(17)
has a classical solution V satisfying Vx > 0 and
Vxx > 0. Differentiating with respect to m(t) and
n(t) in the equation(17), the optimizer can be derived
as follows:

m∗(t) = − k1Vxr
σ0Vxx

− µ1
σ20

· Vx
Vxx

, (18)

n∗(t) = − Vxη
xVxx

− k

σ21
· Vx
xVxx

. (19)

Substituting (18) and (19) back into (17) , by means of
some simplification ,the HJB equation (13) is equiva-
lent to the following partial differential equation:

Vt + (µ0 − µ1 + rx)Vx + (θ − cr)Vr

+ (b− aη)Vη −
1

2

(
µ21
σ20

+
k2η

σ21

)
V 2
x

Vxx
− 1

2
σ21η

V 2
xη

Vxx

− kη
VxVxη
Vxx

+
1

2
σ21ηVηη +

1

2
k21Vrr

− 1

2
k21
V 2
xr

Vxx
− k1µ1

σ0
· VxVxr
V xx

= 0,

(20)
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with terminal condition: V (T, x, r, η) = (x− l)2.
We try to conjecture the value function V with the

following form:

V (t, r, x, η) = f(t, r, η)
[
x− g(t, r)

]2
, (21)

with f(T, r, η) = 1 and g(T, r) = 0 for all η and r.
The partial derivatives with respect to V (t, x, r, η) are
following:

Vt = ft(x− g)2 − 2f(x− g)gt,

Vx = 2f(x− g), Vη = fη(x− g)2,

Vr = fr(x− g)2 − 2f(x− g)gr,

Vrr = frr(x− g)2 − 4frgr(x− g) + 2fg2r

− 2fgrr(x− g),

Vηη = fηη(x− g)2, Vxr = 2[fr(x− g)− fgr],

Vxx = 2f, Vxη = 2fη(x− g).
(22)

Putting the above partial derivatives(22) back into (20)
leads to an equation for f(t, r, η) and g(t, r):

(x− g)2
[
ft + 2rf + (θ − cr)fr + (b− aη)fη

−
(
µ21
σ20

+
k2η

σ21

)
f − σ21η

f2η
f

− 2kηfη +
1

2
σ21ηfηη

− k21
f2r
f

− 2k1µ1
σ0

fr +
1

2
k21frr

]
− 2(x− g)f

[
gt − rg + (θ − k1µ1

σ0
− cr)gr

+
1

2
k21grr + (µ1 − µ0)

]
= 0

(23)
To solve the equation(23), we decomposed it into

the following two equations:

ft + 2rf + (θ − cr)fr + (b− aη)fη

−
(
µ21
σ20

+
k2η

σ21

)
f − σ21η

f2η
f

− 2kηfη

+
1

2
σ21ηfηη − k21

f2r
f

− 2k1µ1
σ0

fr +
1

2
k21frr = 0;

(24)

gt − rg + (θ − cr − k1µ1
σ0

)gr +
1

2
k21grr

+ (µ1 − µ0) = 0,

g(T, r) = l.

(25)

Lemma 2 Assume that a solution of the equation(24)
is conjectured as

f(t, r, η) = Ψ(t) exp
{
ϕ(t)η + h(t)r

}
, (26)

with boundary conditions given by Ψ(T ) = 1 and
ϕ(T ) = h(T ) = 0, then Ψ(t), ϕ(t) and h(t) are given
by (36),(33), and (35) respectively.

Proof: Introducing (26) into (24), after some simpli-
fications, we obtain

Ψ(t)η

(
ϕ′(t)− aϕ(t)− k2

σ21
− σ21ϕ

2(t)− 2kϕ(t)

+
1

2
σ21ϕ

2(t)

)
+Ψ(t)r

(
2 + h′(t)− ch(t)

)
+Ψ′(t) + Ψ(t)

((
θ − 2k1µ1

σ0

)
h(t) + bϕ(t)

− µ21
σ20

− 1

2
k21h

2(t)

)
= 0,

(27)
here, Ψ

′
(t), ϕ

′
(t) and h

′
(t) denote the derivatives with

respect to t. Comparing the coefficients on the both
sides of (27), we have

ϕ′(t)− (2k + a)ϕ(t)− 1

2
σ21ϕ

2(t)− k2

σ21
= 0,

ϕ(T ) = 0

(28)

h′(t)− ch(t) + 2 = 0, h(T ) = 0; (29)

Ψ′(t) + Ψ(t)

((
θ − 2k1µ1

σ0

)
h(t) + bϕ(t)

− µ21
σ20

− 1

2
k21h

2(t)

)
= 0, Ψ(T ) = 1.

(30)

Suppose that ∆ϕ denotes the discriminant of the
quadratic function

1

2
σ21ϕ

2(t) + (2k + a)ϕ(t) +
k2

σ21
= 0. (31)

Obviously, ∆ϕ = (2k + a)2 − 2k2 > 0, the equa-
tion (31) has two different roots, and the two roots are
given by

ϕ1,2 =
−(2k + a)±

√
(2k + a)2 − 2k2

σ21
.

Further, the equation (28) can be rewritten in the form

ϕ′(t) =
1

2
σ21(ϕ(t)− ϕ1)(ϕ(t)− ϕ2). (32)

After some calculation, integrating from t to T , we
obtain

1

ϕ1 − ϕ2

∫ T

t

(
1

(ϕ− ϕ1)(ϕ− ϕ2)

)
dϕ(t)

=
1

2
σ21(T − t).
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Solving the above integral, by some easy calculations,
we have

ϕ(t) =
ϕ1ϕ2(1− exp{1

2σ
2
1(T − t)(ϕ1 − ϕ2)})

ϕ1 − ϕ2 exp{1
2σ

2
1(T − t)(ϕ1 − ϕ2)}

.

(33)
Since (29) is a first-order linear differential equa-

tion, we can rewrite it as following form

dh(t)

ch(t)− 2
= dt. (34)

Through the integration of the both sides of equation
(34), we obtain the solution of (29)

h(t) =
2

c
(1− e−c(T−t)). (35)

Substituting (33) and (35) back into (30), we can get
the solution of equation (30)

Ψ(t) = exp

((
θ − 2k1µ1

σ0

)∫ T

t
h(s)ds

+ b

∫ T

t
ϕ(s)ds− 1

2
k21

∫
h2(s)ds− µ21

σ20
(T − t)

)
,

(36)

where,∫ T

t
h(s)ds =

2

c
(T − t)− 2

c2
(1− e−c(T−t)),

∫ T

t
ϕ(s)ds = ϕ2(T − t)

+
2k2

σ41
ln

ϕ1 − ϕ2

ϕ1 − ϕ2 exp{1
2σ

2
1(ϕ1 − ϕ2)(T − t)}

,

∫ T

t
h2(s)ds =

4

c2
(T − t)− 8

c3
(1− e−c(T−t))

+
2

c3
(1− e−2c(T−t)).

The proof is completed. �

Lemma 3 Suppose that a solution of (25) is of the
structure g(t, r) = (µ1 − µ0)

∫ T
t ĝ(s, r)ds+ lĝ(t, r),

then ĝ(t, r) satisfies the following partial differential
equation :

ĝt − rĝ +

(
θ− k1µ1

σ0
− cr

)
ĝr +

1

2
k21 ĝrr = 0, (37)

with the boundary condition given by ĝ(T, t) = 1.

Proof: For convenience, we denote the following
variational operator on any function g(t, r) :

∇g(t, r) = −rg +
(
θ − k1µ1

σ0
− cr

)
gr +

1

2
k21grr.

(38)
(21) can be written as{

∂g(t,r)
∂t +∇g(t, r) + (µ1 − µ0) = 0

g(T, r) = l.
(39)

Considering

g(t, r) = (µ1 − µ0)

∫ T

t
ĝ(s, r)ds+ lĝ(t, r),

we derive

∂g(t, r)

∂t
=− (µ1 − µ0)ĝ(t, r) + l

∂ĝ(t, r)

∂t

=(µ1 − µ0)

(∫ T

t

∂ĝ(s, r)

∂s
ds−ĝ(T, r)

)
+ l

∂ĝ(t, r)

∂t
(40)

∇g(t, r) = (µ1 − µ0)

∫ T

t
∇ĝ(s, r)ds+ l∇ĝ(t, r).

(41)
Putting (40) and (41) into (39), and we get

(µ1 − µ0)

(∫ T

t

(
∂ĝ(s, r)

∂s
+∇ĝ(s, r)

)
ds

− ĝ(T, r) + 1

)
+ l

(
∂ĝ(t, r)

∂t
+∇ĝ(t, r)

)
= 0.

(42)

Therefore, we obtain{
∂ĝ(s,r)

∂s +∇ĝ(s, r) = 0
ĝ(T, r) = 1.

(43)

In a result, we complete the proof. �

Lemma 4 Assume that ĝ(t, r) = exp{A(t)+B(t)r}
is a solution of the equation (37), with boundary con-
dition A(T ) = 0 and B(T ) = 0, then A(t) and B(t)
are given by (49) and (48), respectively.

Proof: The partial derivatives of ĝ(t, r) with respect
to t and r are given as follows:

ĝt = exp{A(t) +B(t)r}
[
A′(t) +B′(t)r

]
,

ĝr = exp{A(t) +B(t)r}B(t),

ĝrr = exp{A(t) +B(t)r}B2(t).

(44)
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Plugging (44) into (37), after some simple calculation-
s, we derive

exp{A(t) +B(t)r}
[
A′(t) +

(
θ − k1µ1

σ0

)
B(t)

+
1

2
k21B

2(t) + r
(
B′(t)− 1− cB(t)

)]
= 0.

(45)

The equation (45) can be decomposed into the fol-
lowing two equations:

B′(t)− 1− cB(t) = 0, B(T ) = 0; (46)

A′(t) +

(
θ − k1µ1

σ0

)
B(t) +

1

2
k21B

2(t) = 0,

A(T ) = 0;

(47)

Using the same approach as (29), the solution of (46)
is given by

B(t) =
1

c
(e−c(T−t) − 1). (48)

Further, for (47), after some integration, we obtain

A(t) =

(
θ − k1µ1

σ0

)∫ T

t
B(s)ds

+
1

2
k21

∫ T

t
B2(s)ds

=

(
θ

c2
− k1µ1
c2σ0

− k21
c3

)
·
(
1− e−c(T−t)

)
+

(
k21
2c2

− θ

c
+
k1µ1
cσ0

)(
T − t

)
+
k21
4c3

(1− e−2c(T−t)).

(49)
In a result, the proof of lemma4 is completed. �

Further, under equation (22), we obtain

Vx
Vxx

= X(t)− g, (50)

Vxη
Vxx

= ϕ(t)
(
X(t)− g

)
, (51)

Vxr
Vxx

= h(t)
(
X(t)− g

)
− gr. (52)

To sum up, we get the following conclusion.

Theorem 5 For a given l and C , if a solution of
HJB equation (17) is given by V (t, x, r, η) , then the
optimal investment and reinsurance strategies for the
problem (12) and (14) are given by

n∗(t) = −(X(t)− g(t, r))

X(t)

(
ϕ(t) +

k

σ21

)
,

m∗(t) = −
(
k1
σ0
h(t) +

µ1
σ20

)
(X(t)− g(t, r)) +

k1
σ0
gr,

where, g(t, r) = (µ1 − µ0)
∫ T
t ĝ(s, r)ds + lĝ(t, r) is

given by lemma (3) and lemma (4). Equation (33) is
the solution of ϕ(t).

Remark 6 In the investment-reinsurance strategies,
we find that the optimal reinsurance strategy m∗(t) is
affected by both the parameters of reinsurance mar-
ket and the parameters of interest rate model in finan-
cial market. However, the optimal reinsurance strate-
gy is not affected by the parameters of the risky-asset,
which is the same to the conclusion that the param-
eters of the risky asset have no influence on the op-
timal reinsurance strategy in Li et al.(2012). But, it
has some different points to them. For example, since
they don’t consider the stochastic interest rate model,
they obtain that the reinsurance strategy is only affect-
ed by the parameters of the reinsurance market. And,
the parameters of insurance market have no effect on
the optimal investment strategy. In our results, it is
obviously that the optimal investment n∗(t) is not on-
ly related to the parameters of financial market, it is
also relevant to the parameters of insurance market.

4 The Efficient Frontier

In this section, we will derive the explicit expres-
sion of the efficient frontier by the Lagrange duality
theorem. Considering the problem (17), we get the
minimized value of (14) as follows.

f(0, r0, η0)
(
x0 − g(0, r0)

)2
.

So, the minimized value of (12) is given by

L̄min(m
∗(t), n∗(t), l)

=f(0, r0, η0)
(
x0 − g(0, r0)

)2 − (C − l)2

=f(0, r0, η0)

(
x0 − (µ1 − µ0)×∫ T

0
ĝ(s, r)ds− lĝ(0, r0)

)2

− (C − l)2

=f(0, r0, η0)
(
ψ2 − 2lψĝ(0, r0) + l2ĝ2(0, r0)

)
− (C2 − 2Cl + l2)

=
(
f(0, r0, η0)ĝ

2(0, r0)− 1
)
l2

− 2
(
ψf(0, r0, η0)ĝ(0, r0)− C

)
l

+ ψ2f(0, r0, η0)− C2,
(53)

where,

ψ = x0 − (µ1 − µ0)

∫ T

0
ĝ(s, r)ds. (54)
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Noting that

f(0, r0, η0)ĝ
2(0, r0)− 1

=Ψ(0) exp{2A(0) + ϕ(0)η + (h(0) + 2B(0))r}
− 1,

(55)
we have the following conclusion.

Lemma 7 Under the condition:k1µ1

σ0
+

k21
2c < θ <

2k1µ1

σ0
, ϕ(t), B(t), A(t) and Ψ(t) increase with re-

spect to the variable t. But, h(t) decreases with re-
spect to t. Moreover, we have: ϕ(t) < 0, B(t) < 0,
A(t) < 0, h(t) > 0 and Ψ(t) < 1, for ∀t ∈ [0, T ).
But, we have h(t) + 2B(t) = 0.

Proof: Differentiating ϕ(t), B(t), A(t), Φ(t), and
h(t) with respect to t, we have

ϕ′(t) =

k2

σ2
1
(ϕ1 − ϕ2)

2 exp{1
2σ

2
1(ϕ1 − ϕ2)(T − t)}

(ϕ1 − ϕ2 exp{1
2σ

2
1(ϕ1 − ϕ2)(T − t)})2

,

B′(t) =e−c(T−t),

A′(t) =− (θ − k1µ1
σ0

)B(t)− 1

2
k21B

2(t)

=−B(t)

(
θ − k1µ1

σ0
+

1

2
k21B(t)

)
=−B(t)

(
θ − k1µ1

σ0
+
k21
2c

(
e−c(T−t) − 1

))
=−B(t)

(
2θσ0c− 2ck1µ1 − k21σ0

2σ0c

+
k21
2c
e−c(T−t)

)
,

h′(t) =− 2e−c(T−t),

Ψ′(t) =−Ψ(t)

((
θ − 2k1µ1

σ0

)
h(t) + bϕ(t)

− µ21
σ20

− 1

2
k21h

2(t)

)
.

Clearly, we find that ϕ′(t) > 0, B′(t) > 0, and
obtain ϕ(t) < ϕ(T ) = 0, B(t) < B(T ) = 0. In addi-
tion, noticing that under the condition: θ > k1µ1

σ0
+

k21
2c ,

we have A′(t) > 0 and A(t) < A(T ) = 0. But, it is
obviously that h′(t) < 0, then we get h(t) > h(T ) =
0, for ∀t ∈ [0, T ). From (36), we find that Ψ(t) > 0.
Thus, under the condition θ < 2k1µ1

σ0
, Ψ′(t) > 0, then

we obtain Ψ(t) < Ψ(T ) = 1. From (35) and (48), it
is clear that h(t) + 2B(t) = 0.

Therefore, Lemma 7 holds. �

According to Lemma 7 , under the condition k1µ1

σ0
+

k21
2c < θ < 2k1µ1

σ0
, we obtain

f(0, r0, η0)ĝ
2(0, r0)− 1

=Ψ(0) exp{2A(0) + ϕ(0)η + (h(0) + 2B(0))r}
− 1 < 0.

(56)
Therefore, L̄min(m

∗(t), n∗(t), l) can be maximized
when l is given by

l∗ =
ψf(0, r0, η0)ĝ(0, r0)− C

f(0, r0, η0)ĝ2(0, r0)− 1
. (57)

In addition, the maximized value of

L̄min(m
∗(t), n∗(t), l)

is obtained

L̄maxmin(m
∗, n∗, l∗)

=
f(0, r0, η0)ĝ

2(0, r0)

1− f(0, r0, η0)ĝ2(0, r0)
(C − ψĝ−1(0, r0))

2.

(58)
As a result, we summarize the above results in the fol-
lowing proposition.

Theorem 8 For a given constant C, under the condi-
tions k1µ1

σ0
+

k21
2c < θ < 2k1µ1

σ0
, the optimal reinsurance

and investment strategies for the mean-variance prob-
lem (9) corresponding to E(X(T )) = C are given by

n∗(t) = −(X(t)− g(t, r))

X(t)
(ϕ(t) +

k

σ21
),

m∗(t) = −
(
k1
σ0
h(t) +

µ1
σ20

)
(X(t)− g(t, r)) +

k1
σ0
gr,

with the efficient frontier given by

V ar(X(T )) =
1

Ψ−1(0)e−2A(0)−ϕ(0)η0 − 1

·
(
E(X(T ))− ψe−A(0)−B(0)r0

)2
,

where,

ψ =x0 − (µ1 − µ0)

∫ T

0
ĝ(s, r)ds,

l∗ =
ψΨ(0)eA(0)+ϕ(0)η0 − C

Ψ(0)e2A(0)+ϕ(0)η0 − 1
,

g(t, r) =(µ1 − µ0)

∫ T

t
eA(s)+B(s)r(s)ds

+ l∗eA(t)+B(t)r(t).

gr =(µ1 − µ0)

∫ T

t
B(s)eA(s)+B(s)r(s)ds

+ l∗B(t)eA(t)+B(t)r(t).
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Here, Ψ(t), ϕ(t), h(t), A(t), and B(t) are given by
Lemma 2 and Lemma 3, respectively.

Remark 9 From Theorem 8, we can draw some con-
clusions. (i) the optimal investment strategy n∗(t) is
correlated with the parameters of the insurance mar-
ket µ0, µ1, σ0, the parameters of interest rate model
k1, c, θ, and the parameters of risky-asset model a, k,
σ1. The reason of this result is that the Brownian mo-
tion describing the dynamic of surplus process is the
same as that describing the dynamics of interest rate.
But the expectation of volatility b has no influence on
the investment strategy, it surprised us. (ii) the rein-
surance strategy m∗(t) is affected by the parameters
of reinsurance market µ0, µ1,σ0 and the parameters
of interest rate k1, c, θ. (iii) The efficient frontier has
correlation with all the parameters. That is, the risk
for an insurer depends on the volatilities of interest
rate, risky asset, and the insurers’ surplus.

Remark 10 The optimal polices and efficient frontier
are not deterministic functions, but are dynamic func-
tions. They depend on the stochastic interest rate r(t),
but does not depend on the stochastic volatility pro-
cess η(t). However, the optimal investment strategy
and the efficient frontier are related to the parameters
of the dynamics of η(t), but the optimal reinsurance
strategy is not affected by them.

Remark 11 The efficient frontier is a straight line in
the mean-variance deviation diagram, no matter at
which state interest rate is. Let σ[X(T )] be the stan-
dard deviation of the terminal wealth, then we have

E(X(T )) =ψe−A(0)−B(0)r0 + σ[X(T )]

×
√

Ψ−1(0)e−2A(0)−ϕ(0)η0 − 1,

which is called the capital market line.
When σ[X(T )] = 0, then we get

E(X(T )) = ψe−A(0)−B(0)r0 .

Therefore, when C runs over [ψe−A(0)−B(0)r0 ,+∞],
the efficient frontier consists of all the points.

5 Special Cases

In this section, we consider some special cases of
our model in the previous sections, which is called the
original model. The results of original model will be
reduced to the following special cases.

Special case 1. Assumed that the volatility is constan-
t, where η(t) ≡ η, ∀t ∈ [0, T ]. In this case, the HJB

equation (17) can be written as the following form:

Min
π∈Π

([
µ0 − (1−m(t))µ1 + rx+ kηn(t)x

]
Vx

Vt + (θ − cr)Vr +
[1
2
σ21n(t)

2x2η +
1

2
σ20m(t)2

]
Vxx

+
1

2
k21Vrr + σ0m(t)k1Vxr

)
= 0,

0 < t < T.

(59)

Differentiating with respect to m(t) and n(t), the op-
timizer is given

m∗(t) = − k1Vxr
σ0Vxx

− µ1
σ20

· Vx
Vxx

, (60)

n∗(t) = − k

σ21
· Vx
xVxx

. (61)

Substituting (60) and (61) back into (59) , after some
simplification ,the HJB equation (59) is changed into
the following equation:

Vt + (µ0 − µ1 + rx)Vx + (θ − cr)Vr

− 1

2

(
µ21
σ20

+
k2η

σ21

)
V 2
x

Vxx
+

1

2
k21Vrr

− 1

2
k21
V 2
xr

Vxx
− k1µ1

σ0
· VxVxr
Vxx

= 0,

(62)

with terminal condition: V (T, x, r, η) = (x− l)2.
Letting the value function V be the following form

V (t, r, x, ) = f̃(t, r)
[
x− g̃(t, r)

]2
, (63)

with f̃(T, r) = 1 and g̃(T, r) = l. Putting (63) into
(62) leads to

(x− g̃)2
[
f̃t + 2rf̃ + (θ − cr)f̃r −

(
µ21
σ20

+
k2η

σ21

)
f̃

− k21
f̃2r

f̃
− 2k1µ1

σ0
f̃r +

1

2
k21 f̃rr

]
− 2(x− g̃)f̃

[
g̃t − rg̃ + (θ − k1µ1

σ0
− cr)g̃r

+
1

2
k21 g̃rr + (µ1 − µ0)

]
= 0.

(64)
Then, we can get two equations

f̃t + 2rf̃ + (θ − cr)f̃r −
(
µ21
σ20

+
k2η

σ21

)
f̃

− k21
f̃2r

f̃
− 2k1µ1

σ0
f̃r +

1

2
k21 f̃rr = 0,

f̃(T, r) = 1.

(65)
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g̃t − rg̃ + (θ − k1µ1
σ0

− cr)g̃r +
1

2
k21 g̃rr

+ (µ1 − µ0) = 0, g̃(T, r) = l.

(66)

A solution of the equation(65) is conjectured as

f̃(t, r) = Ψ̃(t) exp
{
h̃(t)r

}
. (67)

After some calculations, we obtain

Ψ̃(t)r

(
2 + h̃′(t)− ch̃(t)

)
+ Ψ̃′(t)

+ Ψ̃(t)

((
θ − 2k1µ1

σ0

)
h̃(t)−

(
µ21
σ20

+
k2η

σ21

)
− 1

2
k21h̃

2(t)

)
= 0.

(68)

Comparing the coefficients on the both sides of (68),
we have

h̃′(t)− ch̃(t) + 2 = 0, h̃(T ) = 0; (69)

Ψ̃′(t) + Ψ̃(t)

((
θ − 2k1µ1

σ0

)
h̃(t)−

(
µ21
σ20

+
k2η

σ21

)
− 1

2
k21h̃

2(t)

)
= 0, Ψ̃(T ) = 1.

(70)
And, comparing (69) to (29), we know h̃(t) = h(t).

After some integrals, a solution of (70) is as follows

Ψ̃(t) = exp

((
θ − 2k1µ1

σ0

)∫ T

t
h(s)ds

− 1

2
k21

∫ T

t
h2(s)ds−

(
µ21
σ20

+
k2η

σ21

)
(T − t)

)
,

(71)

From (66) and (25), we find that g̃(t, r) = g(t, r).
Then, we get the following corollary.

Corollary 12 Assume that the volatility of risky-asset
is constant, the optimal investment strategy n∗(t) by
the first expression in Theorem 8 is changed into

n∗(t) = − k

σ21
· (X(t)− g(t, r))

X(t)
,

and the optimal reinsurance strategy m∗(t) given by
the second expression in Theorem 8 does not change.
The efficient frontier is given by

V ar(X(T )) =
1

Ψ̃−1(0)e−2A(0) − 1

·
(
E(X(T ))− ψe−A(0)−B(0)r0

)2
.

Remark 13 Comparing the corollary 12 to the theo-
rem 8, ϕ(t) is changed into 0 as η(t) is assumed to be
a constant η, and h(t), g(t, r) don’t change. So, the
reinsurance strategy doesn’t changed. It shows that
the volatility of risky-asset have no influence on the
optimal reinsurance strategy. And, we can conclude
that ϕ(t) is an impact factor of the investment strat-
egy produced by the parameters of volatility process
η(t). In addition, the efficient frontier is also affected.

Special case 2. Suppose that the interest rate is con-
stant, where r(t) ≡ r, ∀t ∈ [0, T ]. Similar to the
derivation of the original model, we solve the problem
for this special case. Under this assumption, θ = 0,
c = 0, k1 = 0, the equation (24) and (25) are changed
into the following two equations:

f̄t + 2rf̄ + (b− aη)f̄η −
(
µ21
σ20

+
k2η

σ21

)
f̄

− σ21η
f̄2η

f̄
− 2kηf̄η +

1

2
σ21ηf̄ηη = 0,

f̄(T, η) = 1;

(72)

ḡt − rḡ + (µ1 − µ0) = 0, ḡ(T ) = l. (73)

Assumed that the solution of (72) is the following for-
m:

f̄(t, η) = Ψ̄(t) exp
{
ϕ̄(t)η

}
, (74)

with boundary conditions given by Ψ̄(T ) = 1 and
ϕ̄(T ) = 0. Substituting (74) into (72), we get

Ψ̄(t)η

(
ϕ̄′(t)− aϕ̄(t)− k2

σ21
− 2kϕ̄(t)− 1

2
σ21ϕ̄

2(t)

)
+ Ψ̄′(t) + Ψ̄(t)

(
bϕ̄(t) + 2r − µ21

σ20

)
= 0,

(75)
Then, the above equation can be decomposed into

ϕ̄′(t)− aϕ̄(t)− k2

σ21
− 2kϕ̄(t)− 1

2
σ21ϕ̄

2(t) = 0,

ϕ̄(T ) = 0;
(76)

Ψ̄′(t) + Ψ̄(t)

(
bϕ̄(t) + 2r − µ21

σ20

)
= 0,

Ψ̄(T ) = 1.

(77)

Comparing (76) to (28), we find that ϕ̄(t) = ϕ(t).
And after some integrals, the solution of (77) is

Ψ̄(t) = exp

(
b

∫ T

t
ϕ(s)ds+

(
2r − µ21

σ20

)
(T − t)

)
.

(78)
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For (73), it is a first-order linear differential equa-
tion, after some calculations, we obtain

ḡ(t) =
µ0 − µ1

r
(1− er(T−t)) + le−r(T−t). (79)

So, in this special case, the conclusion is as follows.

Corollary 14 Supposed that the interest rate is con-
stant, the optimal investment and reinsurance strategy
are the following form

n∗(t) = −(X(t)− ḡ(t))

X(t)

(
ϕ(t) +

k

σ21

)
,

m∗(t) = −µ1
σ20

(X(t)− ḡ(t)),

with the efficient frontier

V ar(X(T )) =
eϕ(0)η0

Ψ̄−1(0)− eϕ(0)η0−2rT

·
(
e−rTE(X(T ))− ψ̄

)2
,

where, ψ̄(t) = x0 − µ0−µ1

r (1− e−rT ).

Remark 15 From Lemma 3, we know that g(t, r) is
a dynamic function produced by the interest rate pro-
cess r(t). when r(t) becomes to a constant r, g(t, r)
is changed into the function of t in corollary 9 and
h(t) becomes to 0. It suggests that h(t) is an impact
factor of the reinsurance strategy produced by the pa-
rameters of interest rate model. Further, the efficient
frontier is affected. So, the optimal strategies and ef-
ficient frontier are all changed as the interest rate is
fixed. It means that the stochastic interest rate has
effect on optimal reinsurance and investment strategy.

6 Numerical Analysis

In this section,a numerical example is provided to
illustrate the impact of the parameters of interest rate,
stochastic volatility and surplus process on the opti-
mal reinsurance-investment strategy and the efficient
frontier. Throughout this section, unless otherwise s-
tated, the basic parameters are given by µ0 = 0.8,
σ0 = 1, µ1 = 1.2, x0 = 100, θ = 0.1, c = 0.5,
k1 = 0.1, r(0) = 0.05, η0 = 0.1, k = 1.5, a = 1.5,
b = 0.06, σ1 = 1.5, T = 1, t = 0, C = 107.

6.1 Sensitivity Analysis on the Optimal Rein-
surance Strategy

First, we study the effect of the parameters on the
optimal reinsurance strategy. Some conclusions are as
follows:
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Figure 1: The effect of c on the optimal reinsurance
strategy
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Figure 2: The effect of µ1 on the optimal reinsurance
strategy
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Figure 3: The effect of σ0 on the optimal reinsurance
strategy

(a1) Figure 1 shows that the parameter c of the in-
terest rate model has an effect on the optimal reinsur-
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ance strategy m∗(t), and m∗(t) increases with respect
to c. From the interest rate model, it is clear that as
c becomes larger, the expectation of interest rate will
be smaller. This means that when the expectation of
interest rate goes down, the income of the insurance
company will reduce. So, under the certain benefits,
the insurer will cut down the amount of the reinsur-
ance to meet the requirements of earning in the short
term.

(a2) Figure2 and Figure 3 illustrate the parameters
of surplus process how affect on the optimal reinsur-
ance strategy. Figure 2 shows that m∗(t) increases
with respect to the parameter µ1. It tells us that the
larger µ1 becomes, the less reinsurance or the more
new business the insurer will purchase. Moreover,
from Figure 3, we find that m∗(t) decreases with re-
spect to the parameter σ0, which reflects the volatility
of surplus process has impact on the optimal reinsur-
ance policy. In other words, the larger σ0 becomes,
the more reinsurance is. It means that as the volatility
becomes larger, the risk of surplus process increases.
Then, the insurer will buy more reinsurance to spread
the risk.

6.2 Sensitivity Analysis on the Optimal In-
vestment Strategy

In this subsection, we give the impact of some pa-
rameters on the optimal investment n∗(t), which is the
optimal proportion of investing in the risky asset.
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Figure 4: The effect of σ0 on the optimal investment
strategy

(b1) Figure 4 suggests that n∗(t) increases with re-
spect to σ0. From (a2), we know that when σ0 is larg-
er, the insurer will buy more reinsurance to spread the
risk. After having more reinsurance, the insurer’s rev-
enue will become lower. In order to achieve a fixed
profit, the insurer will increase the proportion of in-
vesting the risky asset.

0.2 0.4 0.6 0.8 1 1.2
0.054

0.056

0.058

0.06

0.062

0.064

0.066

0.068

0.07

op
tim

al
 in

ve
st

m
en

t s
tr

at
eg

y

c

the effect of c on optimal investment strategy

Figure 5: The effect of c on the optimal investment
strategy
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Figure 6: The effect of k on the optimal investment
strategy
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Figure 7: The effect of σ1 on the optimal investment
strategy

(b2) From Figure 5, we find that n∗(t) increases
as the parameter c becomes larger. In fact, the model
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of interest rate shows that the larger c, the smaller ex-
pectation of interest rate. Hence ,the insurer will buy
more risky asset to get more profits. Figure 6 shows
that n∗(t) is all increasing when the parameter k is in-
creasing. As the matter of the risky asset model, if k
becomes larger, the more expectation of the risky as-
set. So, the insurer will buy more risky asset as k is
increasing.

(b3) Figure 7 describes the parameter σ1 which
is interpreted as the volatility of the risky asset how
effect on the optimal investment strategy. From it, as
σ1 is increasing, n∗(t) is decreasing. It means that for
the larger volatility of the risky asset , the insurer will
purchase smaller risky asset to reduce the risk.

6.3 Sensitivity Analysis on the Efficient
Frontier

Figure 8, Figure9, and Figure 10 illustrate the rela-
tionships between the standard deviation σ[X(T )] and
the expected return C. According to our observation
on this Figures, we get the following some instructive
conclusions:

(c1) σ[X(T )] increases with respect to the param-
eters k1 for a fixed expected return. From the points
of economic implication of k1, the larger value of k1
will lead to a larger risk of interest rate, which leads
to a larger risk level.

(c2) σ[X(T )] also increases with respect to the pa-
rameters σ0 for a fixed expected return. And from
(b1), we know that a larger value of σ0 will lead to
a greater amount in the risky asset. It means that
the risks from the risky asset and surplus process will
greatly increase.

(c3) σ[X(T )] is a decreasing function of the pa-
rameter σ1 for the same expected return. From the
conclusion (b3) in the previous subsection, we find
that the larger value of σ1, the smaller amount in the
risky asset. It suggests that the risks resulted from the
risky asset will descend, which leads to a smaller risk
level.

7 Conclusions
Reinsurance is important for the insurer recent-

ly. This paper takes the proportional reinsurance in-
to consideration and focuses on a dynamic mean-
variance reinsurance-investment problem in the s-
tochastic interest rate and stochastic volatility envi-
ronment, in which the interest rate is modeled by the
Vasicek model and the volatility of the risky-asset is
driven by the Heston model. In order to hedge the risk
of financial market, we purchase the risk-free asset
and the risky-asset, and the proportional reinsurance
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Figure 8: The effect of k1 on the standard deviation
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Figure 9: The effect of σ0 on standard deviation
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Figure 10: The effect of σ1 on standard deviation

is considered to reduce the risk of the insurance. By
employing dynamic programming principle and La-
grange duality theorem, we obtain the optimal reinsur-
ance and investment strategies and the efficient fron-
tier under the mean-variance criterion. Moreover, we
consider some special cases and give the optimal re-
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sults. Finally, we present a numerical example to illus-
trate the effect of model parameters on the optimal s-
trategy and the efficient frontier at the end of the paper.
Some interesting and main conclusions are as follows:
(i) the optimal reinsurance strategy is not only affect-
ed by the parameters of reinsurance, it is also related
to the parameters of interest rate model. But it is not
influenced by the parameters of the risky asset model.
And, h(t) is an impact factor of reinsurance strategy
produced by the parameters of interest rate model. (ii)
the optimal investment strategy is not only affected by
the parameters of the financial market, but also influ-
enced by the parameters of insurance market. And, all
the parameters have effect on the efficient frontier. (i-
ii) the efficient reinsurance-investment strategies and
the efficient frontier are all dynamic functions which
depend on the interest rate process r(t). (iv) The effi-
cient frontier in the mean-standard deviation diagram
is still a straight line, no matter at which state the in-
terest rate is.
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